Cauchy-Goursat Theorem

Ref: Complex Variables by James Ward Brown and Ruel V. Churchil

Dr. A. Lourdusamy M.Sc.,M.Phil.,B.Ed.,Ph.D.
Associate Professor
Department of Mathematics
St.Xavier's College(Autonomous)
Palayamkottai-627002.

44. Cauchy-Goursat theorem

Cauchy theorem: Let C be a simple closed contour described in the positive sense. Let f be analytic at each point interior to and on C. Let $\mathrm{f}{ }^{1}$ be continuous in the closed region R consisting of all points interior to and on the simple closed contour C. then $\int_{c} f(z) d z=0$.

OR

If a function f is analytic and f^{1} is continuous at all points interior to and on a simple closed contour C , then $\int_{c} f(z) d z=0$.

Proof:

We let C denote a simple closed contour $z=z(t),(a \leq t \leq b)$ described in the positive sense, and f is analytic and f^{1} is continuous at all points interior to and on C .

$$
\begin{align*}
& \text { Now, } \int_{c} f(z) d z=\int_{a}^{b} f[z(t)] z^{1}(t) d t . \ldots \ldots \ldots \ldots \ldots(1) \tag{1}\\
& \text { i.e., } \int_{c} f(z) d z=\int_{a}^{b}(u[x(t), y(t)]+i v[x(t), y(t)])\left(x^{1}(t)+i y^{1}(t) d t\right. \\
& \text { i.e. } \int_{c} f(z) d z=\int_{a}^{b}\left(u x^{1}-v y^{1}\right) d t+i \int_{a}^{b}\left(v x^{1}+u y^{1}\right) d t \ldots . . \text { (2) }
\end{align*}
$$

i.e., $\int_{c} f(z) d z=\int_{c}(u d x-v d y)+i \int_{c}(v d x+u d y)$

Formula from calculus:

Suppose that two real-valued functions $P(x, y)$ and $Q(x, y)$, together with their first-order partial derivatives, are continuous throughout the closed region R consisting of all points interior to and on the simple closed contour C. According to Green's theorem, $\int_{c} P d x+Q d y=\iint_{R}\left(Q_{x}-P_{y}\right) d A$

Now f is analytic in $\mathrm{R} \Rightarrow \mathrm{f}$ is continuous in R
Then the function u and v are also continuous in R.
If f^{1} is continuous in R then so are the first-order partial derivatives of u and v .

Then from Green's theorem we can rewrite (3) as

$$
\begin{aligned}
& \int_{c} f(z) d z=\iint_{R}\left(-v_{x}-u_{y}\right) d A+i \iint_{R}\left(u_{x}-v_{y}\right) d A \\
& \text { i.e., } \left.\int_{c} f(z) d z=0 \quad \text { (since } \mathrm{u}_{\mathrm{x}}=\mathrm{v}_{\mathrm{y}}, \mathrm{u}_{\mathrm{y}}=-\mathrm{v}_{\mathrm{x}}\right)
\end{aligned}
$$

Remark: Suppose C is taken in the clockwise direction then
$\int_{c} f(z) d z=-\int_{-c} f(z) d z=0$
Example: If C is any simple closed contour, in either direction, then
$\int_{c} \exp \left(z^{3}\right) d z=0$. We know that $\mathrm{f}(z)=\exp \left(z^{3}\right)$ is analytic everywhere and its
derivative $\left.f^{1}(z)=3 z^{2} \exp \epsilon^{3}\right)$ is continuous everywhere.
Hence, $\left.\int_{c} \exp \xi^{3}\right) d z=0$.

45. Proof of Cauchy-Goursat theorem

Statemen:(Cauchy-Goursat) If a function f is analytic at all points interior to and on a simple closed contour C , then $\int_{c} f(z) d z=0$

Proof of the theorem
We first prove the following Lemma.

Lemma: Let f be analytic throughout a closed region R consisting of the points interior to a positively oriented simple closed contour C together with the points on C itself.

For any positive number ε, the region R can be covered with a finite number of squares and partial squares, indexed by $j=1,2, \ldots, n$, such that in each one there is a fixed point z_{j} for which the inequality
$\left|\frac{f(z)-f\left(z_{j}\right)}{z-z_{j}}-f^{1}\left(z_{j}\right)\right|<\varepsilon\left(z \neq z_{j}\right)$
is satisfied by all other points in that square or partial square.

Proof of the Lemma: We start by forming subsets of the region R which consists of the points on a positively oriented simple closed contour C together with points interior to C .

We draw equally spaced lines parallel to the real and imaginary axes such that the distance between adjacent vertical lines is the same as that between adjacent horizontal lines.

We thus form a finite number of closed square sub regions, where each point of R lies in at least one square sub regions (square), where each point of R lies in at least one such square or partial Square (if a particular square contains points that are not in R, we remove those points and call what remains a partial square) and each square or partial square contains points of R.

We thus cover the region R with a finite number of squares and partial squares.

FIG

We suppose that the needed points z_{j} do not exist after subdividing one of the original sub regions a finite number of times and reach a contradiction. We let σ_{0} denote that sub regions if it is a square; if it is a partial squares, we let σ_{0} denote the entire square of which it is a part. After we subdivide σ_{0}, at least one of the four smaller squares, denoted by σ_{1}, must contain points of R but no appropriate point z_{j}. We then subdivide σ_{1} and continue in this manner. It may be that after a square $\sigma_{k-1}(\mathrm{k}=1,2, \ldots$,$) has been subdivided, more than one of the$ four smaller squares constructed from it can be chosen. To make a specific choice, we take σ_{k} to be the one lowest and then furthest to the left.

We construct the nested infinite sequence $\sigma_{0}, \sigma_{1}, \sigma_{2}, \ldots, \sigma_{k-1}, \sigma_{k}, \ldots(2)$, of squares such that there is a point z_{0} common to each σ_{k}; also, each of these squares contains points of R other than possibly z_{0}. Recall how the sizes of the squares in the sequence are decreasing, and note that any δ neighborhood $\left|z-z_{0}\right|<\delta$ of z_{0} contains such squares when their diagonals have lengths less than δ.

FIGURE 55

Every δ neighborhood $\left|z-z_{0}\right|<\delta$ therefore contains points of R distinct form z_{0}, and this means that z_{0} is an accumulation point of R. Since the region is a closed set, it follows, that z_{0} is a point in R.

Given: f is analytic in $R \Rightarrow$ it is analytic at z_{0}.
So $f^{1}\left(Z_{0}\right)$ exists.
i.e., for each $\varepsilon>0, \exists\left|z-z_{0}\right|<\delta$ such that $\left|\frac{f(z)-f\left(z_{0}\right)}{z-z_{0}}-f^{1}\left(z_{0}\right)\right|<\varepsilon$

But the neighborhood $\left|z-z_{0}\right|<\delta$ contains a square σ_{k} when the integer k is large enough that the length of a diagonal of that square is less then δ. Consequently, z_{0} serves at the point z_{j} in inequality (1) for the sub region consisting of the square σ_{k} or a part of σ_{k}. Contrary to the way in which the sequence (2) was formed, then, it is not necessary to subdivide σ_{k}. We then arrive at a contradiction, and the proof of the lemma is complete.

Proof of Cauchy-Goursat theorem:

To Prove: $\int_{c} f(z) d z=0 \quad \ldots(3) \quad$ Where f is analytic through a region R consisting of a positively oriented simple closed contour C and points interior to it.

Given $\varepsilon>0$, we consider the covering of R into a finite number of squares and partial squares. Let us define on the jth square or partial square the following function, where z_{j} is the fixed point in that sub region for which inequality (1) holds:
$\delta_{j}(z)=\left\{\begin{array}{ccc}\frac{f(z)-f\left(z_{j}\right)}{z-z_{j}}-f^{1}\left(z_{j}\right) & \text { when } & z \neq z_{j} \\ 0 & \text { when } & z=z_{j}\end{array}\right.$.

From (1), $\left|\delta_{j}(z)\right|<\varepsilon \ldots .(5)$ at all points z in the sub region of which $\delta_{j}(z)$ is defined. Since $\mathrm{f}(\mathrm{z})$ is continuous, $\delta_{j}(z)$ is continuous throughout the sub region and $\operatorname{Lim}_{z \rightarrow z_{j}} \delta_{j}(z)=f^{1}\left(z_{j}\right)-f^{1}\left(z_{j}\right)=0$

Next, let $\mathrm{C}_{\mathrm{j}}(\mathrm{j}=1,2, \ldots, \mathrm{n})$ denote the positively oriented boundaries of the of the above squares or partial squares covering R. Let z be a point on any particular C_{j}. Then from (4),
$f(z)-f\left(z_{j}\right)-\left(z-z_{j}\right) f^{1}\left(z_{j}\right)=\left(z-z_{j}\right) \delta_{j}(z)$
i.e., $f(z)=f\left(z_{j}\right)+\left(z-z_{j}\right) f^{1}\left(z_{j}\right)+\left(z-z_{j}\right) \delta_{j}(z)$
i.e., $f(z)=f\left(z_{j}\right)-z_{j} f^{1}\left(z_{j}\right)+f^{1}\left(z_{j}\right) z+\left(z-z_{j}\right) \delta_{j}(z)$
i.e., $\int_{c_{j}} f(z) d z=\left[f\left(z_{j}\right)-z_{j} f^{1}\left(z_{j}\right)\right] \int_{c_{j}} d z+f^{1}\left(z_{j}\right) \int_{c_{j}} z d z+\int_{c_{j}}\left(z-z_{j}\right) \delta_{j}(z) d z$
i.e., $\int_{c_{j}} f(z) d z=\left[\int_{c_{j}}\left(z-z_{j}\right) \delta_{j}(z) d z\right](\mathrm{j}=1,2, \ldots, \mathrm{n}) \ldots \ldots . .(7)$
since $\int_{c_{j}} d z=0$ and $\int_{c_{j}} z d z=0$ as the functions 1 and z possess anti -
derivatives everywhere in the finite plane.
Then $\sum_{j=1}^{n} \int_{c_{j}} f(z) d z=\sum_{j=1}^{n} \int_{c_{j}}\left(z-z_{j}\right) \delta_{j}(z) d z$
i.e., $\int_{c} f(z) d z=\sum_{j=1}^{n} \int_{c_{j}}\left(z-z_{j}\right) \delta_{j}(z) d z$
since the two integrals along the common boundary of every pair of adjacent sub regions cancel each other, the integral being taken in one sense along that line segment in one sub region and in the opposite sense in the other (Fig). Only the integrals along the arcs that arc parts of C remain.
(8)

$$
\left|\int_{C} f(z) d z\right| \leq \sum_{j=1}^{n}\left|\int_{C_{j}}\left(z-z_{j}\right) \delta_{j}(z) d z\right|
$$

FIGURE 56

So $\mid \int_{c} f(z) d z \leq \sum_{j=1}^{n} \int_{c_{j}}\left(z-z_{j}\right) \delta_{j}(z) d z \ldots . . .(8)$
To find an upper bound for each absolute value on the right in (8).
Note that each C_{j} coincides either entirely or partially with the boundary of a square. In either case, we let s_{j} denote the length of side of the square. In the jth integral, both z and z_{j} lie in C_{j} and so $\left(z-z_{j}\right) \delta_{j}(z)<\sqrt{2} s_{j} \varepsilon \ldots . .(9)$

Note that the length of C_{j} is $4 s_{j}$ if C_{j} is the boundary of a square. Let A_{j} be the area of the square. So $\left|\int_{c_{j}}\left(z-z_{j}\right) \delta_{j}(z) d z\right|<\sqrt{2} s_{j} \varepsilon 4 s_{j}=4 \sqrt{2} A_{j} \varepsilon \ldots$ (10)

If C_{j} is the boundary of a partial square, its length does not exceed $4 s_{j}+L_{j}$ Where L_{j} is the length of that part of C_{j} which is also a part of C, Again letting A_{j} denote the area of the full square,
we find that
$\left|\int_{c_{j}}\left(z-z_{j}\right) \delta_{j}(z) d z\right|<\sqrt{2} s_{j} \varepsilon\left(4 s_{j}+L_{j}\right)$
i.e., $\left|\int_{c_{j}}\left(z-z_{j}\right) \delta_{j}(z) d z\right|<4 \sqrt{2} A_{j} \varepsilon+\sqrt{2} S L_{j} \varepsilon \ldots \ldots$. .(1)
where S is the length of a side of some square that encloses the entire contour C as well as all of the squares originally used in covering R. Note that the sum of all the $A_{j} s$ does not exceed S^{2}.

If L denotes the length of C, it follows from (8), (10), and (11) that
$\left|\int_{c} f(z) d z\right|<\left(4 \sqrt{2} S^{2}+\sqrt{2} S L\right) \varepsilon$
Since $\varepsilon>0$ is arbitrary, (we can choose it so that the right hand side of this last inequality is as small as we please. The left-hand side, which is independent of ε, must therefore be equal to; hence) $\left|\int_{c} f(z) d z\right|=0$.

